
Brewer's Conje
ture and the Feasibility ofConsistent, Available, Partition-Tolerant WebServi
esSeth Gilbert� Nan
y Lyn
h�
Abstra
tWhen designing distributed web servi
es, there are threeproperties that are
ommonly desired:
onsisten
y, avail-ability, and partition toleran
e. It is impossible to a
hieveall three. In this note, we prove this
onje
ture in the asyn-
hronous network model, and then dis
uss solutions to thisdilemma in the partially syn
hronous model.1 Introdu
tionAt PODC 2000, Brewer1, in an invited talk [2℄, made the following
on-je
ture: it is impossible for a web servi
e to provide the following threeguarantees:� Consisten
y� Availability� Partition-toleran
eAll three of these properties are desirable { and expe
ted { from real-worldweb servi
es. In this note, we will �rst dis
uss what Brewer meant by the
onje
ture; next we will formalize these
on
epts and prove the
onje
ture;�Laboratory for Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge,MA 02139.1Eri
 Brewer is a professor at the University of California, Berkeley, and the
o-founderand Chief S
ientist of Inktomi.

�nally, we will des
ribe and attempt to formalize some real-world solutionsto this pra
ti
al diÆ
ulty.Most web servi
es today attempt to provide strongly
onsistent data.There has been signi�
ant resear
h designing ACID2 databases, and mostof the new frameworks for building distributed web servi
es depend on thesedatabases. Intera
tions with web servi
es are expe
ted to behave in a trans-a
tional manner: operations
ommit or fail in their entirety (atomi
), trans-a
tions never observe or result in in
onsistent data (
onsistent), un
ommit-ted transa
tions are isolated from ea
h other (isolated), and on
e a trans-a
tion is
ommitted it is permanent (durable). It is
learly important, forexample, that billing information and
ommer
ial transa
tion re
ords behandled with this type of strong
onsisten
y.Web servi
es are similarly expe
ted to be highly available. Every requestshould su

eed and re
eive a response. When a servi
e goes down, it maywell
reate signi�
ant real-world problems; the
lassi
 example of this isthe potential legal diÆ
ulties should the E-Trade web site go down. Thisproblem is exa
erbated by the fa
t that a web-site is most likely to beunavailable when it is most needed. The goal of most web servi
es today isto be as available as the network on whi
h they run: if any servi
e on thenetwork is available, then the web servi
e should be a

essible.Finally, on a highly distributed network, it is desirable to provide someamount of fault-toleran
e. When some nodes
rash or some
ommuni
ationlinks fail, it is important that the servi
e still perform as expe
ted. Onedesirable fault toleran
e property is the ability to survive a network parti-tioning into multiple
omponents. In this note we will not
onsider stoppingfailures, though in some
ases a stopping failure
an be modeled as a nodeexisting in its own unique
omponent of a partition.2 Formal ModelIn this se
tion, we will formally de�ne what is meant by the terms
onsistent,available, and partition tolerant.2.1 Atomi
 Data Obje
tsThe most natural way of formalizing the idea of a
onsistent servi
e is asan atomi
 data obje
t. Atomi
 [4℄, or linearizable [3℄,
onsisten
y is the2Atomi
, Consistent, Isolated, Durable

ondition expe
ted by most web servi
es today.3 Under this
onsisten
yguarantee, there must exist a total order on all operations su
h that ea
hoperation looks as if it were
ompleted at a single instant. This is equivalentto requiring requests of the distributed shared memory to a
t as if they wereexe
uting on a single node, responding to operations one at a time. Thisis the
onsisten
y guarantee that generally provides the easiest model forusers to understand, and is most
onvenient for those attempting to designa
lient appli
ation that uses the distributed servi
e. See Chapter 13 of [5℄for a more
omplete de�nition of atomi

onsisten
y.2.2 Available Data Obje
tsFor a distributed system to be
ontinuously available, every request re
eivedby a non-failing node in the system must result in a response.4 That is, anyalgorithm used by the servi
e must eventually terminate. In some waysthis is a weak de�nition of availability: it puts no bound on how long thealgorithm may run before terminating, and therefore allows unbounded
om-putation. On the other hand, when quali�ed by the need for partition toler-an
e, this
an be seen as a strong de�nition of availability: even when severenetwork failures o

ur, every request must terminate.2.3 Partition Toleran
eThe above de�nitions of availability and atomi
ity are quali�ed by the needto tolerate partitions. In order to model partition toleran
e, the networkwill be allowed to lose arbitrarily many messages sent from one node toanother. When a network is partitioned, all messages sent from nodes inone
omponent of the partition to nodes in another
omponent are lost.(And any pattern of message loss
an be modeled as a temporary partitionseparating the
ommuni
ating nodes at the exa
t instant the message is lost.)The atomi
ity requirement (x2.1) therefore implies that every response willbe atomi
, even though arbitrary messages sent as part of the algorithmmight not be delivered. The availability requirement (x2.2) implies that3Dis
ussing atomi

onsisten
y is somewhat di�erent than talking about an ACIDdatabase, as database
onsisten
y refers to transa
tions, while atomi

onsisten
y refersonly to a property of a single request/response operation sequen
e. And it has a di�erentmeaning than the Atomi
 in ACID, as it subsumes the database notions of both Atomi
and Consistent.4Brewer originally only required almost all requests to re
eive a response. As allowingprobabilisti
 availability does not
hange the result when arbitrary failures o

ur, forsimpli
ity we are requiring 100% availability.

every node re
eiving a request from a
lient must respond, even thougharbitrary messages that are sent may be lost. Note that this is similar towait-free termination in a pure shared-memory system: even if every othernode in the network fails (i.e. the node is in its own unique
omponent of thepartition), a valid (atomi
) response must be generated. No set of failuresless than total network failure is allowed to
ause the system to respondin
orre
tly.53 Asyn
hronous Networks3.1 Impossibility ResultIn proving this
onje
ture, we will use the asyn
hronous network model, asformalized by Lyn
h in Chapter 8 of [5℄. In the asyn
hronous model, thereis no
lo
k, and nodes must make de
isions based only on the messagesre
eived and lo
al
omputation.Theorem 1 It is impossible in the asyn
hronous network model to imple-ment a read/write data obje
t that guarantees the following properties:� Availability� Atomi

onsisten
yin all fair exe
utions (in
luding those in whi
h messages are lost).Proof: We prove this by
ontradi
tion. Assume an algorithm A exists thatmeets the three
riteria: atomi
ity, availability, and partition toleran
e. We
onstru
t an exe
ution of A in whi
h there exists a request that returns anin
onsistent response. The methodology is similar to proofs in Attiya etal. [1℄ and Lyn
h [5℄ (Theorem 17.6). Assume that the network
onsistsof at least two nodes. Thus it
an be divided into two disjoint, non-emptysets: fG1; G2g. The basi
 idea of the proof is to assume that all messagesbetween G1 and G2 are lost. If a write o

urs in G1, and later a read o

ursin G2, then the read operation
annot return the results of the earlier writeoperation.More formally, let v0 be the initial value of the atomi
 obje
t. Let �1 bethe pre�x of an exe
ution of A in whi
h a single write of a value not equal to5Brewer pointed out in the talk that partitions of one node are irrelevant: they areequivalent to that node failing. However restri
ting our attention to partitions
ontainingonly
omponents of size greater than one does not
hange any of the results in this note.

v0 o

urs in G1, ending with the termination of the write operation. Assumethat no other
lient requests o

ur in either G1 or G2. Further, assumethat no messages from G1 are re
eived in G2, and no messages from G2are re
eived in G1. We know that this write
ompletes, by the availabilityrequirement. Similarly, let �2 be the pre�x of an exe
ution in whi
h asingle read o

urs in G2, and no other
lient requests o

ur, ending withthe termination of the read operation. During �2 no messages from G2 arere
eived in G1, and no messages from G1 are re
eived in G2. Again we knowthat the read returns a value by the availability requirement. The valuereturned by this exe
ution must be v0, as no write operation has o

urredin �2.Let � be an exe
ution beginning with �1 and
ontinuing with �2. To thenodes in G2, � is indistinguishable from �2, as all the messages from G1 toG2 are lost (in both �1 and �2, whi
h together make up �), and �1 does notin
lude any
lient requests to nodes in G2. Therefore in the � exe
ution,the read request (from �2) must still return v0. However the read requestdoes not begin until after the write request (from �1) has
ompleted. Thistherefore
ontradi
ts the atomi
ity property, proving that no su
h algorithmexists.Corollary 1.1 It is impossible in the asyn
hronous network model to im-plement a read/write data obje
t that guarantees the following properties:� Availability, in all fair exe
utions,� Atomi

onsisten
y, in fair exe
utions in whi
h no messages are lost.Proof: The main idea is that in the asyn
hronous model an algorithm has noway of determining whether a message has been lost, or has been arbitrarilydelayed in the transmission
hannel. Therefore if there existed an algorithmthat guaranteed atomi

onsisten
y in exe
utions in whi
h no messages werelost, then there would exist an algorithm that guaranteed atomi

onsisten
yin all exe
utions. This would violate Theorem 1.More formally, assume for the sake of
ontradi
tion that there existsan algorithm A that always terminates, and guarantees atomi

onsisten
yin fair exe
utions in whi
h all messages are delivered. Further, Theorem 1implies that A does not guarantee atomi

onsisten
y in all fair exe
utions,so there exists some fair exe
ution � of A in whi
h some response is notatomi
.At some �nite point in exe
ution �, the algorithm A returns a responsethat is not atomi
. Let �0 be the pre�x of � ending with the invalid response.

Next, extend �0 to a fair exe
ution �00, in whi
h all messages are delivered.The exe
ution �00 is now a fair exe
ution in whi
h all messages are delivered.However this exe
ution is not atomi
. Therefore no su
h algorithm A exists.3.2 Solutions in the Asyn
hronous ModelWhile it is impossible to provide all three properties: atomi
ity, availability,and partition toleran
e, any two of these three properties
an be a
hieved.3.2.1 Atomi
, Partition TolerantIf availability is not required, then it is easy to a
hieve atomi
 data andpartition toleran
e. The trivial system that ignores all requests meets theserequirements. However we
an provide a stronger liveness
riterion: if allthe messages in an exe
ution are delivered, the system is available and alloperations terminate. A simple
entralized algorithm meets these require-ments: a single designated node maintains the value of an obje
t. A nodere
eiving a request forwards the request to the designated node, whi
h sendsa response. When an a
knowledgment is re
eived, the node sends a responseto the
lient.Many distributed databases provide this type of guarantee, espe
iallyalgorithms based on distributed lo
king or quorums: if
ertain failure pat-terns o

ur, then the liveness
ondition is weakened and the servi
e no longerreturns responses. If there are no failures, then liveness is guaranteed.3.2.2 Atomi
, AvailableIf there are no partitions, it is
learly possible to provide atomi
, availabledata. In fa
t, the
entralized algorithm des
ribed in Se
tion 3.2.1 meetsthese requirements. Systems that run on intranets and LANs are an exampleof these types of algorithms.3.2.3 Available, Partition TolerantIt is possible to provide high availability and partition toleran
e, if atomi

onsisten
y is not required. If there are no
onsisten
y requirements, theservi
e
an trivially return v0, the initial value, in response to every request.However it is possible to provide weakened
onsisten
y in an available, par-tition tolerant setting. Web
a
hes are one example of a weakly
onsistent

network. In Se
tion 4.4 we
onsider one of the possible weaker
onsisten
y
onditions.4 Partially Syn
hronous Networks4.1 Partially Syn
hronous ModelThe most obvious way to try to
ir
umvent the impossibility result of The-orem 1 is to realize that in the real world, most networks are not purelyasyn
hronous. If you allow ea
h node in the network to have a
lo
k, it ispossible to build a more powerful servi
e.For the rest of this paper, we will assume a partially syn
hronous modelin whi
h every node has a
lo
k, and all
lo
ks in
rease at the same rate.However, the
lo
ks themselves are not syn
hronized, in that they may dis-play di�erent values at the same real time. In e�e
t, the
lo
ks a
t as timers:lo
al state variables that the pro
esses
an observe to measure how mu
htime has passed. A lo
al timer
an be used to s
hedule an a
tion to o

ura
ertain interval of time after some other event. Furthermore, assume thatevery message is either delivered within a given, known time: tmsg, or it islost. Also, every node pro
esses a re
eived message within a given, knowntime: tlo
al, and lo
al pro
essing takes zero time. This
an be formalized asa spe
ial
ase of the General Timed Automata model des
ribed by Lyn
h inChapter 23 of [5℄.4.2 Impossibility ResultIt is still impossible to have an always available, atomi
 data obje
t whenarbitrary messages may be lost, even in the partially syn
hronous model.That is, the following analogue of Theorem 1 holds:Theorem 2 It is impossible in the partially syn
hronous network model toimplement a read/write data obje
t that guarantees the following properties:� Availability� Atomi

onsisten
yin all exe
utions (even those in whi
h messages are lost).Proof: This proof is rather similar to the proof of Theorem 1. We willfollow the same methodology: divide the network into two
omponents,fG1; G2g, and
onstru
t an admissible exe
ution in whi
h a write happens

in one
omponent, followed by a read operation in the other
omponent.This read operation
an be shown to return in
onsistent data.More formally,
onstru
t exe
ution �1 as before in Theorem 1: a singlewrite request and a
knowledgment o

ur inG1, and all messages between thetwo
omponents, fG1; G2g, are lost. We will
onstru
t the se
ond exe
ution,�02, slightly di�erently. Let �02 be an exe
ution that begins with a longinterval of time during whi
h no
lient requests o

ur. This interval mustbe at least as long as the entire duration of �1. Then append to �02 theevents of �2, as de�ned above in Theorem 1: a single read request andresponse in G2, again assuming all messages between the two
omponentsare lost. Finally,
onstru
t � by superimposing the two exe
utions �1 and�02. The long interval of time in �2 ensures that the write request
ompletesbefore the read request begins. However, as in Theorem 1, the read requestreturns the initial value, rather than the new value written by the writerequest, violating atomi

onsisten
y.4.3 Solutions in the Partially Syn
hronous ModelIn the partially syn
hronous model, however, the analogue of Corollary 1.1does not hold. The proof of this
orollary does in fa
t depend on nodesbeing unaware of when a message is lost. There are partially syn
hronousalgorithms that will return atomi
 data when all messages in an exe
utionare delivered (i.e., there are no partitions), and will only return in
onsistent(and, in parti
ular, stale) data when messages are lost. One example of su
han algorithm is the
entralized proto
ol des
ribed in Se
tion 3.2.1, modi�edto time-out lost messages. On a read (or write) request, a message is sentto the
entral node. If a response from the
entral node is re
eived, then thenode delivers the requested data (or an a
knowledgment). If no response isre
eived within 2 � tmsg + tlo
al, then the node
on
ludes that the messagewas lost. The
lient is then sent a response: either the best known valueof the lo
al node (for a read operation), or an a
knowledgment (for a writeoperation). In this
ase, atomi

onsisten
y may be violated.4.4 Weaker Consisten
y ConditionsWhile it is useful to guarantee that atomi
 data will be returned in exe
u-tions in whi
h all messages are delivered (within some time bound), it isequally important to spe
ify what happens in exe
utions in whi
h some ofthe messages are lost. In this se
tion, we will dis
uss one possible weaker
onsisten
y
ondition that allows stale data to be returned when there are

partitions, yet still pla
e formal requirements on the quality of the stale datareturned. This
onsisten
y guarantee will require availability and atomi

onsisten
y in exe
utions in whi
h no messages are lost, and is thereforeimpossible to guarantee in the asyn
hronous model as a result of Corollary1.1.In the partially syn
hronous model it often makes sense to base guar-antees on how long an algorithm has had to re
tify a situation. This
on-sisten
y model ensures that if messages are delivered, then eventually somenotion of atomi
ity is restored.In an atomi
 exe
ution, we would de�ne a partial order of the read andwrite operations, and then require that if one operation begins after anotherone ends, the former does not pre
ede the latter in the partial order. We willde�ne a weaker guarantee, t-Conne
ted Consisten
y, whi
h de�nes a partialorder in a similar manner, but only requires that one operation not pre
edeanother if there is an interval between the operations in whi
h all messagesare delivered.De�nition 3 A timed exe
ution, �, of a read-write obje
t is t-Conne
tedConsistent if two
riteria hold. First, in exe
utions in whi
h no messagesare lost, the exe
ution is atomi
. Se
ond, in exe
utions in whi
h messagesare lost, there exists a partial order P on the operations in � su
h that:1. P orders all write operations, and orders all read operations with re-spe
t to the write operations.2. The value returned by every read operation is exa
tly the one writtenby the previous write operation in P , or the initial value, if there isno su
h previous write in P .3. The order in P is
onsistent with the order of read and write requestssubmitted at ea
h node.4. Assume there exists an interval of time longer than t in whi
h nomessages are lost. Further, assume an operation, �,
ompletes beforethe interval begins, and another operation, �, begins after the intervalends. Then � does not pre
ede � in the partial order P .This guarantee allows for some stale data when messages are lost, butprovides a time limit on how long it takes for
onsisten
y to return, on
ethe partition heals. This de�nition
an of
ourse be generalized to provide
onsisten
y guarantees when only some of the nodes are
onne
ted, and

when
onne
tions are available only some of the time. These generalizationswill be further examined in future work.A variant of the
entralized algorithm des
ribed in Se
tion 4.3 is t-Conne
ted Consistent. Assume node C is the
entralized node. The al-gorithm behaves as follows:� read at node A:A sends a request to C for the most re
ent value. If A re
eives aresponse from C within time 2 � tmsg + tlo
al, it saves the value andreturns it to the
lient. Otherwise, A
on
ludes that a message waslost and it returns the value with the highest sequen
e number thathas ever been re
eived from C, or the initial value if no value has yetbeen re
eived from C. (When a
lient read request o

urs at C, it a
tslike any other node, sending messages to itself.)� write at A:A sends a message to C with the new value. A waits 2 � tmsg + tlo
al,or until it re
eives an a
knowledgment from C, and then sends ana
knowledgment to the
lient. At this point, either C has learnedof the new value, or a message was lost, or both events o

urred. IfA
on
ludes that a message was lost, it periodi
ally retransmits thevalue to C (along with all values lost during earlier write operations)until it re
eives an a
knowledgment from C. (As in the
ase of readoperations, when a
lient write request o

urs at C, it a
ts like anyother node, sending messages to itself.)� New value is re
eived at C:C serializes the write requests that it hears about by assigning them
onse
utive integer tags. Periodi
ally C broad
asts the latest valueand sequen
e number to all other nodes.Theorem 4 The modi�ed
entralized algorithm is t-Conne
ted
onsistent.Proof: First, it is
lear that in exe
utions in whi
h no messages are lost,the operations are atomi
. An exe
ution is atomi
 if every operation a
ts asif it is exe
uted at a single instant; in this
ase, that single instant o

urswhen C pro
esses the operation. C serializes the operations, ensuring atomi

onsisten
y in exe
utions in whi
h all messages are delivered.Next, we examine exe
utions in whi
h messages are lost. The partialorder, P is
onstru
ted as follows. Write operations are ordered by the

sequen
e number assigned by the
entral node. Ea
h read operation is se-quen
ed after the write operation whose value it returns. It is
lear by the
onstru
tion that the partial order P satis�es
riteria 1 and 2 of the de�ni-tion of t-Conne
ted
onsisten
y. As the algorithm handles requests in theorder re
eived,
riterion 3 is also
learly true.In showing that the partial order respe
ts
riterion 4, there are four
ases: write followed by read, write followed by write, read followed by read,and read followed by write. Let time t be long enough for a write operationto
omplete (and for C to assign a sequen
e number to the new value), andfor one of the periodi
 broad
asts from C to o

ur.1. write followed by readAssume a write o

urs at Aw, after whi
h an interval of time longerthan t passes in whi
h all messages are delivered. After this, a readis requested at some node. By the end of the interval, two thingshave happened. First, Aw has noti�ed the
entral node of the newvalue, and the write operation has been assigned a sequen
e number.Se
ond, the
entral node has rebroad
ast that value (or a later valuein the partial order) to all other nodes during one of the periodi
broad
asts. As a result, the read operation does not return an earliervalue, and therefore it must
ome after the write in the partial orderP .2. write followed by writeAssume a write o

urs at Aw, after whi
h an interval of time longerthan t passes in whi
h all messages are delivered. After this, a writeis requested at some node. As in the previous
ase, by the end of theinterval in whi
h messages are delivered, the
entral node has assigneda sequen
e number to the write operation at Aw. As a result, the laterwrite operation is sequen
ed by the
entral node after the �rst writeoperation. Therefore the se
ond write
omes after the �rst write inthe partial order P .3. read followed by readAssume a read operation o

urs at Br, after whi
h an interval of timelonger than t passes in whi
h all messages are delivered. After this, aread is requested at some node. Let be the write operation whosevalue the �rst read operation at Br returns. By the end of the inter-val in whi
h messages are delivered, the
entral node has assigned asequen
e number to , and has broad
ast the value of (or a latervalue in the partial order) to all other nodes. As a result, the se
ond

read operation does not return a value earlier in the partial order than . Therefore the se
ond read operation does not pre
ede the �rst inthe partial order P .4. read followed by writeAssume a read operation o

urs at Br, after whi
h an interval of timelonger than t passes in whi
h all messages are delivered. After this,a write is requested at some node. Let be the write operationwhose value the �rst read operation at Br returns. By the end of theinterval in whi
h messages are delivered, the
entral node has assigneda sequen
e number to , and as a result all write operations beginningafter the interval are serialized after . Therefore the write operationdoes not pre
ede the read operation in the partial order P .Therefore, P satis�es
riterion 4 of the de�nition, and this algorithm ist-Conne
ted Consistent.5 Con
lusionIn this note, we have shown that it is impossible to reliably provide atomi
,
onsistent data when there are partitions in the network. It is feasible,however, to a
hieve any two of the three properties:
onsisten
y, availability,and partition toleran
e. In an asyn
hronous model, when no
lo
ks areavailable, the impossibility result is fairly strong: it is impossible to provide
onsistent data, even allowing stale data to be returned when messages arelost. However in partially syn
hronous models it is possible to a
hieve apra
ti
al
ompromise between
onsisten
y and availability. In parti
ular,most real-world systems today are for
ed to settle with returning \most ofthe data, most of the time." Formalizing this idea and studying algorithmsfor a
hieving it is an interesting subje
t for future theoreti
al resear
h.A
knowledgmentsWe thank Eri
 Brewer for his interesting PODC talk, for providing us withhis talk slides and notes, and for en
ouraging us in writing this note. Wealso thank Charles Leiserson for suggesting this problem and for interestingand helpful dis
ussions.

Referen
es[1℄ Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-leg, and R�udiger Reis
huk. A
hievable
ases in an asyn
hronous environ-ment. In 28th Annual Symposium on Foundations of Computer S
ien
e,pages 337{346, Los Angeles, California, O
tober 1987.[2℄ Eri
 A. Brewer. Towards robust distributed systems. (Invited Talk)Prin
iples of Distributed Computing, Portland, Oregon, July 2000.[3℄ Mauri
e P. Herlihy and Jeannette M. Wing. Linearizability: A
orre
t-ness
ondition for
on
urrent obje
ts. ACM Transa
tions on Program-ming Languages and Systems, 12(3):463{492, July 1990.[4℄ Leslie Lamport. On interpro
ess
ommuni
ation { parts I and II. Dis-tributed Computing, 1(2):77{101, April 1986.[5℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufman, 1996.

